105 research outputs found

    A geometric observer-assisted approach to tailor state estimation in a bioreactor for ethanol production

    Get PDF
    In this work, a systematic approach based on the geometric observer is proposed to design a model-based soft sensor, which allows the estimation of quality indexes in a bioreactor. The study is focused on the structure design problem where the set of innovated states has to be chosen. On the basis of robust exponential estimability arguments, it is found that it is possible to distinguish all the unmeasured states if temperature and dissolved oxygen concentration measurements are combined with substrate concentrations. The proposed estimator structure is then validated through numerical simulation considering two different measurement processor algorithms: the geometric observer and the extended Kalman filter

    Different control strategies for a yeast fermentation bioreactor

    Get PDF
    Biological systems are usually highly sensitive to process conditions variations, such as temperature, pH, substrate concentration. For this reason, it is important to adequately control and monitor the process in order to guaranteeing product quality while maintaining adequate performance and productivity. The production of ethanol by fermentation is certainly one of the most important industrial bioprocesses, being ethanol an alternative source of energy. For this reason, valuable models of this process based on different kinetic considerations are available in literature, and they can be considered a valid benchmark to investigate control system and estimation techniques for biological reactors. Three different control strategies have been analysed: direct reactor temperature control, cascade control where the primary loop uses delayed ethanol measurements, and 2x2 control system with inferential control for the product concentration. The proposed configurations have been compared at different operating conditions and results show that the use of the inferential control is the most effective in case of severe disturbances

    Sustainable management of waste in green nursery: the Tuscan experience

    Get PDF
    The green nursery sector in Europe involves 90,000 ha of cultivated land and 120,000 ha for the nurseries (MiPAAF, 2012), reaching 19.8 billions of Euros in 2011. Every year, nurseries produce waste about 4 kg of the residual biomass for each m2 of the potted plants cultivation. Nurseries waste make up a substantial quantity of organic materials e.g. wood biomass-substrate, which could be retrieved and valorized. With the expansion of potted plants cultivation and the resulting increase in discarded products a number of companies have begun to setting up solutions for the recovery of materials accumulated. Analysis led to the development of a separating system based on trunk vibration technology. To this end, two shaker yard were identified, developed and tested for the recovery of residual biomasses. With these solutions, green waste can be easily grasped by a clamp device able to convey strong vibrations to the trunk (or to the aerial part of the plant) to the point that the soil materials are detached from the vegetable portions

    Modeling a biological reactor using sparse identification method

    Get PDF
    In this work a model-based controller for a fermentation bioreactor has been developed. By simulating the model of the process that acts as a virtual plant, input-output data have been generated and used to identify the system using sparse identification of nonlinear dynamics methodology. The obtained model is then used in a model-based algorithm to control the bioreactor temperature, where the manipulated action is obtained as a result of a constrained nonlinear optimization problem which minimizes the mismatch between the predicted trajectory and the desired one. Good performances have been obtained by applying the proposed control strategy for set-point changes and disturbance rejection

    AgroBot Smash a Robotic Platform for the Sustainable Precision Agriculture

    Get PDF

    An autonomous ground mobile unit for the precision physical weed control.

    Get PDF
    In this paper the design, the main characteristics and the automation systems of innovative autonomous ground mobile units (GMU) for physical weed control (PWC) in maize are described. The machine will be created within the activities of the European Project RHEA (Robot fleets for Highly Effective Agriculture and forestry management), that aims to produce different prototypes of autonomous terrestrial and aerial robot able to perform several activities related to the general crop protection in different agricultural scenarios. The first autonomous ground unit machine was designed in order to perform a mechanical and thermal treatment removing weeds from the inter-row crop space and applying in-row selective and precision flaming by means of two crossed LPG rod burners. By means of some modifications of the tools it will be possible to realize also an autonomous unit for the precision broadcast flaming application. In this case the design involves a replacement of the mechanical tools working in the inter-row space with 50 cm wide burners able to perform flaming at different intensities according to weed cover detected by the perception system of the robot. The working width of both the PWC machines will be of 4.5 m, thus covering five entire maize inter-row spaces of 0.75 m each and 2 half inter-row space of 0.375 m each. The correct position of the tools (mechanical and thermal) will be guaranteed by an automatic precision guidance system connected and supervised to an image based row detection system. Each working elements will be provided by two crossed 0.25 m wide rod burners, hitting one side of each crop row. The flame should hit the weeds growing in the “inrow” space (a 0.25 m wide strip of soil with the maize plant in the middle). Regarding the control of the weed emerged in the “inter-row” space each working unit of the will be provided with rigid tools (one central foot-goose and two side “L” shaped sweeps). The mechanical treatment will be performed, independently from the weed presence, as hoeing is a very important agronomical practice. On the contrary, broadcast flaming in the inter-row space will be performed after weed detection, using three different LPG pressures and doses according to weed cover (no weed cover-no treatment, weed cover between 0 and 25%-flaming at 0.3 MPa, weed cover higher than 25%-flaming at 0.4 MPa). This very innovative application of precision PWC in maize could represent not only a good opportunity for farmers in term of herbicide use reduction, but also an environmental friendly and energy saving application of flaming in organic farming
    • …
    corecore